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Abstract Introductive backgrounds to a new mathematical physics discipline—Quantum
Mathematics—are discussed and analyzed both from historical and from analytical points
of view. The magic properties of the second quantization method, invented by V. Fock in
1932, are demonstrated, and an impressive application to the nonlinear dynamical systems
theory is considered.
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1 Introduction

By many mathematicians and mathematical physicists there is taken a broad and inclusive
view of modern mathematical physics. During the last century this science evolved within at
least four components which illustrate [22] the development of the mathematics and quan-
tum physics synergy:

(1) the use of ideas from mathematics in shedding new light on the existing principles of
quantum physics, either from a conceptual or from a quantitative point of view;

(2) the use of ideas from mathematics in discovering new “laws of quantum physics”;
(3) the use of ideas from quantum physics in shedding new light on existing mathematical

structures;
(4) the use of ideas from quantum physics in discovering new domains in mathematics.

Each of these topics plays some role in understanding the modern mathematical physics.
However, our success in directions (2) and (4) is certainly more modest than our success in
directions (1) and (3). In some cases it is difficult to draw a clear-cut distinction between
these two sets of components. In fact, we are lucky when it is possible to progress in di-
rections (2) and (4), and when we make major progress there, historians like to speak of a
revolution. In any case, many of mathematical physicists strive to understand within their
research efforts these deep and lofty goals.

But there are many situations when mathematical physicists research efforts are directed
toward another, more mundane aspect:

(5) the use of ideas from quantum physics and mathematics to benefit “economic competi-
tiveness”.

Here too, one might subdivide this aspect into conceptual understanding on the one hand
(such as the mathematical model of Black and Sholes for pricing of derivative securities in
financial markets) or invention on the other: the formulation of new algorithms or materi-
als (e.g. quantum computers) which might revolutionize technology or change our way of
life. As above, the boundary between these domains is not sharp, and it remains open to
opinion and interpretation. The last strand can be characterized as “applied” mathematical
physics. Rather we will restrict our analysis to the first four strands characterizing modern
quantum physics and mathematics aspects. In fact, one believes that a case can be made that
most of the profound applied directions arise after earlier fundamental quantum physics and
mathematics progress.

We have passed through an extraordinary 35-year period of development of modern fun-
damental mathematics and quantum physics. Much of this development has drawn from one
subject to understand other. Not only have concepts from diverse fields been united: statis-
tical physics, quantum field theory and functional integration; gauge theory and geometry;
index theory and knot invariants, etc., but also new phenomena have been recognized and
new areas have emerged whose significance we only partially understand—both for mathe-
matics and for modern quantum physics: such as noncommutative geometry, super-analysis,
mirror symmetry, new topological invariants of manifolds, and the general notion of geo-
metric quantization.

Over the past thirty five years, there is no question that the ideas from quantum physics
have led to far greater invention of new mathematics, than the ideas from mathematics have
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been in discovering new laws of quantum physics. But this just underscores the opportunities
of for future progress in the other direction. One very awaits a new understanding of the
quantum nature of the world!

There has been great publicity and recognition attached to the progress made in modern
geometry, in representation theory, and in deformation theory due to this interaction. But
one should ignore the substantial deep progress in analysis and in probability theory, which
unfortunately is more difficult to understand because of its delicate dependence on subtle
notions of continuity.

On the other hand, there are deep differences between pure mathematics and modern
quantum physics fundamentals. They have evolved from different cultures and they each
have a distinctive set of values of their own, suited for their different realms of universality.
But both subjects are strongly based on intuition, some natural and some acquired, which
form our understanding. On the other hand, quantum physics describes the natural micro-
world. hence physicists appeal to observation in order to verify the validity of a physical
theory. And, although much of mathematics arises from the natural world, mathematics has
no analogous testing ground—mathematicians appeal to their own set of values, namely
mathematical proof, to justify validity of a mathematical theory. When in mathematical
physics announcing results of a mathematical nature, it is necessary to claim a theorem
when the proof meets the mathematical community standards for a proof, otherwise it is
necessary to make a conjection with a detailed outline for support. Most of physics, on the
other hand, has completely different standards.

There is no question that the interaction between modern mathematics and quantum
physics will change radically during this running century. But we do hope that this evolution
will preserve the positive experience of being a mathematician, of being a pure physicist, or
of being a mathematical physicist, so that it remains attractive to the brightest and capable
young students today and tomorrow.

It is instructive to look at the beginning of the XXth century and trace the way mathe-
matics had been exerting the influence on the modern and classical quantum physics, and
next observe the way the modern quantum physics is nowadays exerting so impressive in-
fluence on the modern mathematics. The latter will in part be a main topic of our present
work, devoted to the application of the modern quantum mathematics to studying nonlin-
ear dynamical systems in functional spaces. We will begin with a brief history of quantum
mathematics:

The beginning of the XXth century:

• P.A.M. Dirac—first realized and used in quantum physics the fact that the commutator
operation Da : A � b −→ [a, b] ∈ A, where a ∈ A is fixed and b ∈ A, is a differentiation
of any associative algebra A; moreover, he first constructed a spinor matrix realization
of the Poincaré symmetry group P(1,3) and invented the famous Dirac δ-function [9]
(1920–1926);

• J. von Neumann—first applied the spectral theory of self-adjoint operators in Hilbert
spaces to explain the radiation spectra of atoms and the related matter stability [32]
(1926);

• V. Fock—first introduced the notion of many-particle Hilbert space, named by Fock space,
and introduced the related creation and annihilation operators, acting in it [16] (1932);

• H. Weyl—first understood the fundamental role of the notion of symmetry in physics
and developed a physics-oriented group theory; moreover he showed the importance of
different representations of classical matrix groups for physics and studied the unitary
representations of the Heisenberg-Weyl group related with creation and annihilation op-
erators in Fock space [33] (1931).
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The end of the XXth century. New developments are due to:

• L. Faddeev with co-workers—quantum inverse spectral theory transform [13] (1978);
• V. Drinfeld, S. Donaldson, E. Witten—quantum groups and algebras, quantum topology,

quantum super-analysis [11, 12, 34] (1982–1994);
• Yu. Manin, R. Feynman—quantum information theory [14, 15, 28, 29] (1980–1986);
• P. Shor, E. Deutsch, L. Grover and others—quantum computer algorithms [8, 21, 31]

(1985–1997).

As one can observe, many exciting and highly important mathematical achievements
were strictly motivated by the impressive and deep influence of quantum physics ideas and
ways of thinking, leading nowadays to an altogether new scientific field often called quan-
tum mathematics.

Following this quantum mathematical way of thinking, we will demonstrate below that
a wide class of strictly nonlinear dynamical systems in functional spaces can be treated as
a natural object in specially constructed Fock spaces in which the corresponding evolution
flows are completely linearized. Thereby, the powerful machinery of classical mathematical
tools can be applied to studying the analytical properties of exact solutions to suitably well
posed Cauchy problems.

2 Mathematical Preliminaries: Fock Space and Its Realizations

Let � be a separable Hilbert space, F be a topological real linear space and A := {A(ϕ) :
ϕ ∈ F } a family of commuting self-adjoint operators in � (i.e. these operators commute in
the sense of their resolutions of the identity). Consider the Gelfand rigging [2] of the Hilbert
space �, i.e., a chain

D ⊂ �+ ⊂ � ⊂ �− ⊂ D′
(2.1)

in which �+ and �− are further Hilbert spaces, and the inclusions are dense and continu-
ous, i.e. �+ is topologically (densely and continuously) and quasi-nuclearly (the inclusion
operator i : �+ −→ � is of the Hilbert–Schmidt type) embedded into �, �− is the dual
of �+ with respect to the scalar product 〈., .〉� in �, and D is a separable projective limit
of Hilbert spaces, topologically embedded into �+. Then, the following structural theorem
[2, 3] holds:

Theorem 2.1 Assume that the family of operators A satisfies the following conditions:

(a) D ⊂ DomA(ϕ), ϕ ∈ F, and the closure of the operator A(ϕ) ↑ D coincides with A(ϕ)

for any ϕ ∈ F , that is A(ϕ) ↑ D = A(ϕ) in �;
(b) the Range A(ϕ) ↑ D ⊂ �+ for any ϕ ∈ F ;
(c) for every f ∈ D the mapping F � ϕ −→ A(ϕ)f ∈ �+ is linear and continuous;
(d) there exists a strong cyclic (vacuum) vector |�〉 ∈ ⋂

ϕ∈F DomA(ϕ), such that the set of
all vectors |�〉, ∏n

j=1 A(ϕj )|�〉, n ∈ Z+, is total in �+ (i.e. their linear hull is dense
in �+).

Then there exists a probability measure μ on (F ′,Cσ (F ′)), where F ′ is the dual of F

and Cσ (F ′) is the σ -algebra generated by cylinder sets in F ′ such that, for μ-almost every
η ∈ F ′ there is a generalized joint eigenvector ω(η) ∈ �− of the family A, corresponding to
the joint eigenvalue η ∈ F ′, that is

〈ω(η),A(ϕ)f 〉� = η(ϕ)〈ω(η), f 〉� (2.2)

with η(ϕ) ∈ R denoting the pairing between F and F ′.



2886 Int J Theor Phys (2008) 47: 2882–2897

The mapping

�+ � f −→ 〈ω(η), f 〉� := f̂ (η) ∈ C (2.3)

for any η ∈ F ′ can be continuously extended to a unitary surjective operator F : � −→
L

(μ)

2 (F ′;C), where

F f (η) := f̂ (η) (2.4)

for any η ∈ F ′ is a generalized Fourier transform, corresponding to the family A. Moreover,
the image of the operator A(ϕ), ϕ ∈ F ′, under the F -mapping is the operator of multiplica-
tion by the function F ′ � η → η(ϕ) ∈ C.

We assume additionally that the main Hilbert space � possesses the standard Fock space
(Bose)-structure [4, 6, 30], that is

� =
⊕

n∈Z+
�n, (2.5)

where subspaces �n := �⊗n
(s) , n ∈ Z+, are the symmetrized tensor products of a Hilbert

space H := L2(R
m;C). If a vector g := (g0, g1, . . . , gn, . . .) ∈ �, its norm

‖g‖� :=
( ∑

n∈Z+
‖gn‖2

n

)1/2

, (2.6)

where gn ∈ �⊗n
(s)  L2,(s)((R

m)n;C) and ‖ . . .‖n is the corresponding norm in �⊗n
(s) for all

n ∈ Z+. Denote here that, concerning the rigging structure (2.1), there holds the correspond-
ing rigging for the Hilbert spaces �⊗n

(s) , n ∈ Z+, that is

Dn
(s) ⊂ �⊗n

(s),+ ⊂ �⊗n
(s) ⊂ �⊗n

(s),− (2.7)

with some suitably chosen dense and separable topological spaces of symmetric functions
Dn

(s), n ∈ Z+. Concerning expansion (2.5) we obtain by means of projective and inductive
limits [2–4] the quasi-nucleus rigging of the Fock space � in the form (2.1):

D ⊂ �+ ⊂ � ⊂ �− ⊂ D′
.

Consider now any vector |(α)n〉 ∈ �⊗n
(s), n ∈ Z+, which can be written [2, 6, 26] in the

following canonical Dirac ket-form:

|(α)n〉 := |α1, α2, . . . , αn〉, (2.8)

where, by definition,

|α1, α2, . . . , αn〉 := 1√
n!

∑

σ∈Sn

|ασ(1)〉 ⊗ |ασ(2)〉 . . . |ασ(n)〉 (2.9)

and |αj 〉 ∈ �⊗1
(s) (R

m;C) := H for any fixed j ∈ Z+. The corresponding scalar product of
base vectors as (2.9) is given as follows:

〈(β)n|(α)n〉 := 〈βn,βn−1, . . . , β2, β1|α1, α2, . . . , αn−1, αn〉

=
∑

σ∈Sn

〈β1|ασ(1)〉 . . . 〈βn|ασ(n)〉 := per{〈βi |αj 〉 : i, j = 1, n}, (2.10)
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where “per” denotes the permanent of matrix and 〈.|.〉 is the corresponding product in the
Hilbert space H. Based now on representation (2.8) one can define an operator a+(α) :
�⊗n

(s) −→ �
⊗(n+1)

(s) for any |α〉 ∈ H as follows:

a+(α)|α1, α2, . . . , αn〉 := |α,α1, α2, . . . , αn〉, (2.11)

which is called the “creation” operator in the Fock space �. The adjoint operator a(β) :=
(a+(β))∗ : �⊗(n+1)

(s) −→ �⊗n
(s) with respect to the Fock space � (2.5) for any |β〉 ∈ H, called

the “annihilation” operator, acts as follows:

a(β)|α1, α2, . . . , αn+1〉 :=
n+1∑

j=1

〈β,αj 〉|α1, α2, . . . , αj−1, α̂j , αj+1, . . . , αn+1〉, (2.12)

where the “hat” over a vector denotes that it should be omitted from the sequence.
It is easy to check that the commutator relationship

[a+(α), a(β)] = 〈α,β〉 (2.13)

holds for any vectors |α〉 ∈ H and |β〉 ∈ H. Expression (2.13), owing to the rigged structure
(2.1), can be naturally extended to the general case, when vectors |α〉 and |β〉 ∈ H−, con-
serving its form. In particular, if to take |α〉 := |α(x)〉 = 1√

2π
ei〈λ,x〉 ∈ H− := L2,−(Rm;C)

for any x ∈ R
m, one easily gets from (2.13) that

[a+(x), a(y)] = δ(x − y), (2.14)

where we put, by definition, a+(x) := a+(α(x)) and a(y) := a(α(y)) for all x, y ∈ R
m and

denoted by δ(·) the classical Dirac delta-function.
The construction above makes it possible to observe easily that there exists a unique

vacuum vector |�〉 ∈ H+, such that for any x ∈ R
m

a(x)|�〉 = 0, (2.15)

and the set of vectors
(

n∏

j=1

a+(xj )

)

|�〉 ∈ �⊗n
(s) (2.16)

is total in �⊗n
(s) , that is their linear integral hull over the dual functional spaces �̂⊗n

(s) is dense in
the Hilbert space �⊗n

(s) for every n ∈ Z+. This means that for any vector g ∈ � the following
representation

g =
⊕

n∈Z+

∫

(Rm)n
ĝn(x1, . . . , xn)a

+(x1)a
+(x2) · · ·a+(xn)|�〉 (2.17)

holds with the Fourier type coefficients ĝn ∈ �̂n := �̂⊗n
(s) for all n ∈ Z+, with �̂⊗1

(s) := H 
L2(R

m;C). The latter is naturally endowed with the dual to (2.1) Gelfand type quasi-nucleus
rigging

H+ ⊂ H ⊂ H, (2.18)
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making possible to construct a quasi-nucleus rigging of the dual Fock space �̂ :=⊕
n∈Z+ �̂n. Thereby, chain (2.18) generates the dual Fock space quasi-nucleus rigging

D̂ ⊂ �̂+ ⊂ �̂ ⊂ �̂− ⊂ D̂′ ′ (2.19)

with respect to the central Fock type Hilbert space �̂, where D̂  D, easily following from
(2.1) and (2.18).

Construct now the following self-adjoint operator

a+(x)a(x) := ρ(x) : � → �, (2.20)

called the density operator at a point x ∈ R
m, satisfying the commutation properties:

[ρ(x), ρ(y)] = 0,

[ρ(x), a(y)] = −a(y)δ(x − y), (2.21)

[ρ(x), a+(y)] = a+(y)δ(x − y)

for all y ∈ R
m.

Now, if to construct the following self-adjoint family A := {∫
Rm ρ(x)ϕ(x)dx : ϕ ∈ F }

of linear operators in the Fock space �, where F := S(Rm;R) is the Schwartz functional
space, one can derive, making use of Theorem 2.1, that there exists the generalized Fourier
transform (2.4), such that

�(H) = L
(μ)

2 (S ′;C) 
∫ ⊕

S′
�ηdμ(η) (2.22)

for some Hilbert space sets �η, η ∈ F ′, and a suitable measure μ on S ′, with respect to
which the corresponding joint eigenvector ω(η) ∈ �+ for any η ∈ F ′ generates the Fourier
transformed family Â = {η(ϕ) ∈ R : ϕ ∈ S}. Moreover, if dim�η = 1 for all η ∈ F, the
Fourier transformed eigenvector ω̂(η) := �(η) = 1 for all η ∈ F

′
.

Now we will consider the family of self-adjoint operators A as generating a unitary
family U := {U(ϕ) : ϕ ∈ F } = exp(iA), where for any ρ(ϕ) ∈ A, ϕ ∈ F , the operator

U(ϕ) := exp[iρ(ϕ)] (2.23)

is unitary, satisfying the Abelian commutation condition

U(ϕ1)U(ϕ2) = U(ϕ1 + ϕ2) (2.24)

for any ϕ1, ϕ2 ∈ F .
Since, in general, the unitary family U = exp(iA) is defined in some Hilbert space �,

being not necessarily of Fock type, the important problem of describing its Hilbertian cyclic
representation spaces arises, within which the factorization

ρ(ϕ) =
∫

Rm

a+(x)a(x)ϕ(x)dx (2.25)

jointly with relationships (2.21) hold for any ϕ ∈ F . This problem can be treated using
mathematical tools devised both within the representation theory of C∗-algebras [10] and
Gelfand–Vilenkin [17] approach. Below we will describe main features of the Gelfand–
Vilenkin formalism, being much more suitable for the task, providing a reasonably unified
framework of constructing the corresponding representations.
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Definition 2.2 Let F be a locally convex topological vector space, F0 ⊂ F be a finite-
dimensional subspace of F . Let F 0 ⊆ F ′ be defined by

F 0 := {ξ ∈ F ′ : ξ |F0 = 0}, (2.26)

and called the annihilator of F0.

The quotient space F ′0 := F ′/F 0 may be identified with F ′
0 ⊂ F ′, the adjoint space of F0.

Definition 2.3 Let A ⊆ F ′; then the subset

X
(A)

F 0 := {ξ ∈ F ′ : ξ + F 0 ⊂ A} (2.27)

is called the cylinder set with base A and generating subspace F 0.

Definition 2.4 Let n = dimF0 = dimF ′
0 = dimF ′0. One says that a cylinder set X(A) has

Borel base, if A is Borel, when regarded as a subset of R
n.

The family of cylinder sets with Borel base forms an algebra of sets.

Definition 2.5 The measurable sets in F ′ are the elements of the σ -algebra generated by
the cylinder sets with Borel base.

Definition 2.6 A cylindrical measure in F ′ is a real-valued σ -pre-additive function μ

defined on the algebra of cylinder sets with Borel base and satisfying the conditions
0 ≤ μ(X) ≤ 1 for any X, μ(F ′) = 1 and μ(

∐
j∈Z+ Xj) = ∑

j∈Z+ μ(Xj), if all sets Xj ⊂ F ′,
j ∈ Z+, have a common generating subspace F0 ⊂ F .

Definition 2.7 A cylindrical measure μ satisfies the commutativity condition if and only if
for any bounded continuous function α : R

n −→ R of n ∈ Z+ real variables the function

α[ϕ1, ϕ2, . . . , ϕn] :=
∫

F ′
α(η(ϕ1), η(ϕ2), . . . , η(ϕn))dμ(η) (2.28)

is sequentially continuous in ϕj ∈ F , j = 1,m. (It is well known [17, 18] that in countably
normed spaces the properties of sequential and ordinary continuity are equivalent.)

Definition 2.8 A cylindrical measure μ is countably additive if and only if for any cylinder
set X = ∐

j∈Z+ Xj , which is the union of countably many mutually disjoints cylinder sets
Xj ⊂ F ′, j ∈ Z+, μ(X) = ∑

j∈Z+ μ(Xj).

The following propositions hold.

Proposition 2.9 A countably additive cylindrical measure μ can be extended to a countably
additive measure on the σ -algebra, generated by the cylinder sets with Borel base. Such a
measure will be also called a cylindrical measure.

Proposition 2.10 Let F be a nuclear space. Then any cylindrical measure μ on F ′, satisfy-
ing the continuity condition, is countably additive.
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Definition 2.11 Let μ be a cylindrical measure in F ′. The Fourier transform of μ is the
nonlinear functional

L(ϕ) :=
∫

F ′
exp[iη(ϕ)]dμ(η). (2.29)

Definition 2.12 The nonlinear functional L : F −→ C on F , defined by (2.29), is called
positive definite, if and only if for all fj ∈ F and λj ∈ C, j = 1, n, the condition

n∑

j,k=1

λ̄j L(fk − fj )λk ≥ 0 (2.30)

holds for any n ∈ Z+.

Proposition 2.13 The functional L : F −→ C on F , defined by (2.29), is the Fourier trans-
form of a cylindrical measure on F ′, if and only if it is positive definite, sequentially contin-
uous and satisfying the condition L(0) = 1.

Suppose now that we have a continuous unitary representation of the unitary family U in
a Hilbert space � with a cyclic vector |�〉 ∈ �. Then we can put

L(ϕ) := 〈�|U(ϕ)|�〉 (2.31)

for any ϕ ∈ F := S , being the Schwartz space on R
m, and observe that functional (2.31) is

continuous on F owing to the continuity of the representation. Therefore, this functional is
the generalized Fourier transform of a cylindrical measure μ on S ′ :

〈�|U(ϕ)|�〉 =
∫

S′
exp[iη(ϕ)]dμ(η). (2.32)

From the spectral point of view, based on Theorem 2.1 there is an isomorphism between
the Hilbert spaces � and L

(μ)

2 (S ′;C), defined by |�〉 −→ �(η) = 1 and U(ϕ)|�〉 −→
exp[iη(ϕ)] and next extended by linearity upon the whole Hilbert space �.

In the case of the non-cyclic case there exists a finite or countably infinite family of
measures {μk : k ∈ Z+} on S ′, with �  ⊕

k∈Z+ L
(μk)

2 (S ′;C) and the unitary operator U(ϕ) :
� −→ � for any ϕ ∈ S ′ corresponds in all L

(μk)

2 (S ′;C), k ∈ Z+, to exp[iη(ϕ)]. This means
that there exists a single cylindrical measure μ on S ′ and a μ-measurable field of Hilbert
spaces �η on S ′, such that

� 
∫ ⊕

S′
�ηdμ(η), (2.33)

with U(ϕ) : � −→ �, corresponding [17] to the operator of multiplication by exp[iη(ϕ)]
for any ϕ ∈ S and η ∈ S ′. Thereby, having constructed the nonlinear functional (2.29) in
an exact analytical form, one can retrieve the representation of the unitary family U in the
corresponding Hilbert space � of the Fock type, making use of the suitable factorization
(2.25) as follows: � = ⊕n∈Z+�n, where

�n = span
fn∈L2,s ((R

m)n;C)

{ ∏

j=1,n

a+(xj )|�〉
}

, (2.34)
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for all n ∈ Z+. The cyclic vector |�〉 ∈ � can be, in particular, obtained as the ground state
vector of some unbounded self-adjoint positive definite Hamilton operator H : � −→ �,
commuting with the self-adjoint particles number operator

N :=
∫

Rm

ρ(x)dx, (2.35)

that is [H,N] = 0. Moreover, the conditions

H|�〉 = 0 (2.36)

and

inf
g∈dom H

〈g,Hg〉 = 〈�|H|�〉 = 0 (2.37)

hold for the operator H : � −→ �, where dom H denotes its domain of definition.
To find the functional (2.31), which is called the generating Bogolubov type functional

for moment distribution functions

Fn(x1, x2, . . . , xn) := 〈�| : ρ(x1)ρ(x2) . . . ρ(xn) : |�〉, (2.38)

where xj ∈ R
m, j = 1, n, and the normal ordering operation : · : is defined as

: ρ(x1)ρ(x2) . . . ρ(xn) : =
n∏

j=1

(

ρ(xj ) −
j∑

k=1

δ(xj − xk)

)

, (2.39)

it is convenient to choose the Hamilton operator H : � −→ � in the following [7, 18, 19]
algebraic form:

H := 1

2

∫

Rm

K+(x)ρ−1(x)K(x)dx + V (ρ), (2.40)

being equivalent in the Hilbert space � to the positive definite operator expression

H := 1

2

∫

Rm

(K+(x) − A(x;ρ))ρ−1(x)(K(x) − A(x;ρ))dx, (2.41)

where A(x;ρ) : � → �, x ∈ R
m, is some specially chosen linear self-adjoint operator. The

“potential” operator V (ρ) : � −→ � is, in general, a polynomial (or analytical) functional
of the density operator ρ(x) : � −→ � and the operator is given as

K(x) := ∇xρ(x)/2 + iJ (x), (2.42)

where the self-adjoint “current” operator J (x) : � −→ � can be defined (but non-uniquely)
from the equality

∂ρ/∂t = 1

i
[H, ρ(x)] = −〈∇x · J (x)〉, (2.43)

holding for all x ∈ R
m. Such an operator J (x) : � −→ �, x ∈ R

m can exist owing to the
commutation condition [H,N] = 0, giving rise to the continuity relationship (2.43), if to
take into account that supports suppρ of the density operator ρ(x) : � −→ �, x ∈ R

m,
can be chosen arbitrarily owing to the independence of (2.43) on the potential operator
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V (ρ) : � −→ �, but its strict dependence on it of the corresponding representation (2.33).
Denote also that representation (2.41) holds only under the condition that there exists such
a self-adjoint operator A(x;ρ) : � −→ �, x ∈ R

m, that

K(x)|�〉 = A(x;ρ)|�〉 (2.44)

for all ground states |�〉 ∈ �, corresponding to suitably chosen potential operators V (ρ) :
� −→ �.

The self-adjointness of the operator A(x;ρ) : � −→ �, x ∈ R
m, can be stated following

schemes from works [7, 19], under the additional condition of the existence of such a linear
anti-unitary mapping T : � −→ � that the following invariance conditions hold:

Tρ(x)T −1 = ρ(x), T J (x)T −1 = −J (x), T |�〉 = |�〉 (2.45)

for any x ∈ R
m. Thereby, owing to conditions (2.45), the following expressions

K∗(x)|�〉 = A(x;ρ)|�〉 = K(x)|�〉 (2.46)

hold for any x ∈ R
m, giving rise to the self-adjointness of the operator A(x;ρ) : � −→ �,

x ∈ R
m.

Based now on the construction above one deduces easily from expression (2.43) that the
generating Bogolubov type functional (2.31) obeys for all x ∈ R

m the following functional-
differential equation:

[∇x − i∇xϕ] 1

2i

δL(ϕ)

δϕ(x)
= A

(

x; 1

i

δ

δϕ

)

L(ϕ), (2.47)

whose solutions should satisfy the Fourier transform representation (2.32). In particular,
a wide class of special so-called Poissonian white noise type solutions to the functional-
differential equation (2.47) was obtained in [5, 7, 19] by means of functional-operator meth-
ods in the following generalized form:

L(ϕ) = exp

{

A

(
1

i

δ

δϕ

)}

exp

(

ρ̄

∫

Rm

{exp[iϕ(x)] − 1}dx

)

, (2.48)

where ρ̄ := 〈�|ρ|�〉 ∈ R+ is a Poisson distribution density parameter.
Consider now the case, when the basic Fock space � = ⊗s

j=1 �(j), where �(j),

j = 1, s, are Fock spaces corresponding to the different types of independent cyclic vec-
tors |�j 〉 ∈ �(j), j = 1, s. This, in particular, means that the suitably constructed creation
and annihilation operators aj (x), a+

k (y) : � −→ �, j, k = 1, s, satisfy the following com-
mutation relations:

[aj (x), ak(y)] = 0,

[aj (x), a+
k (y)] = δjkδ(x − y)

(2.49)

for any x, y ∈ R
m.

Definition 2.14 A vector |u〉 ∈ �, x ∈ R
m, is called coherent with respect to a mapping

u ∈ L2(R
m;R

s) := M, if it satisfies the eigenfunction condition

aj (x)|u〉 = uj (x)|u〉 (2.50)

for each j = 1, s and all x ∈ R
m.
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It is easy to check that the coherent vectors |u〉 ∈ � exist. Really, the following vector
expression

|u〉 := exp{(u, a+)}|�〉, (2.51)

where (., .) is the standard scalar product in the Hilbert space M , satisfies the defining con-
dition (2.50), and moreover, the norm

‖u‖� := 〈u|u〉1/2 = exp

(
1

2
‖u‖2

)

< ∞, (2.52)

since u ∈ M and its norm ‖u‖ := (u,u)1/2 is bounded.

3 The Fock Space Embedding Method, Nonlinear Dynamical Systems and Their
Complete Linearization

Consider any function u ∈ M := L2(R
m;R

s) and observe that the Fock space embedding
mapping

ξ : M � u −→ |u〉 ∈ �, (3.1)

defined by means of the coherent vector expression (2.51) realizes a smooth isomorphism
between Hilbert spaces M and �. The inverse mapping ξ−1 : � −→ M is given by the
following exact expression:

u(x) = 〈�|a(x)|u〉, (3.2)

holding for almost all x ∈ R
m. Owing to condition (2.52) one finds from (3.2) that the cor-

responding function u ∈ M .
Let now in the Hilbert space M be defined a nonlinear dynamical system (which can be,

in general, non-autonomous) in partial derivatives

du/dt = K[u], (3.3)

where t ∈ R+ is the corresponding evolution parameter, [u] := (t, x;u,ux,uxx, . . . , urx),
r ∈ Z+, and a mapping K : M −→ T (M) is Frechet smooth. Assume also that the Cauchy
problem

u|t=+0 = u0 (3.4)

is solvable for any u0 ∈ M in an interval [0, T ) ⊂ R
1+ for some T > 0. Thereby, there is

defined the smooth evolution mapping

Tt : M � u0 −→ u(t |u0) ∈ M, (3.5)

for all t ∈ [0, T ).
It is now natural to consider the following commuting diagram

M
ξ−→ �

Tt ↓ ↓ Tt

M
ξ−→ �,

(3.6)
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where the mapping Tt : � −→ �, t ∈ [0, T ), is defined from the conjugation relationship

ξ ◦ Tt = Tt . ◦ ξ. (3.7)

Take now the corresponding to u0 ∈ M coherent vector |u0〉 ∈ � and construct the vector

|u〉 := Tt · |u0〉 (3.8)

for all t ∈ [0, T ). Since vector (3.8) is, by construction, coherent, that is

aj (x)|u〉 := uj (x, t |u0)|u〉 (3.9)

for each j = 1, s, t ∈ [0, T ) and almost all x ∈ R
m, owing to the smoothness of the mapping

ξ : M −→ � with respect to the corresponding norms in the Hilbert spaces M and �, we
derive that coherent vector (3.8) is differentiable with respect to the evolution parameter
t ∈ [0, T ). Thus, one can find easily [24, 26] that

d

dt
|u〉 = K̂[a+, a]|u〉, (3.10)

where

|u〉|t=+0 = |u0〉 (3.11)

and a mapping K̂[a+, a] : � −→ � is defined by the exact analytical expression

K̂[a+, a] := (a+,K[a]). (3.12)

As a result of the consideration above we obtain the following theorem.

Theorem 3.1 Any smooth nonlinear dynamical system (3.3) in Hilbert space M :=
L2(R

m;R
s) is representable by means of the Fock space embedding isomorphism ξ :

M −→ � in the completely linear form (3.10).

Make now some comments concerning the solution to the linear equation (3.10) under
the Cauchy condition (3.11). Since any vector |u〉 ∈ � allows the series representation

|u〉 =
⊕

n:=∑s
j=1 nj ∈Z+

1

(n1!n2! . . . ns !)1/2

×
∫

(Rm)n
f (n)

n1n2...ns

(
x

(1)

1 , x
(1)

2 , . . . , x(1)
n1

;x(2)

1 , x
(2)

2 , . . . , x(2)
n2

; . . . ;x(s)

1 , x
(s)

2 , . . . , x(s)
ns

)

×
s∏

j=1

( nj∏

k=1

dx
(j)

k a+
j (x

(j)

k )

)

|�〉, (3.13)

where for any n = ∑s

j=1 nj ∈ Z+ functions

f (n)
n1n2...ns

∈
s⊗

j=1

L2,s ((R
m)nj ;C)  L2,s

(
R

mn1 × R
mn2 × · · ·Rmns ;C

)
, (3.14)
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and the norm

‖u‖2
� =

∑

n=∑s
j=1 nj

‖f (n)
n1n2...ns

‖2
2 = exp(‖u‖2). (3.15)

Equation (3.10), by substitution (3.13) into it, reduces to an infinite recurrent set of linear
evolution equations in partial derivatives on coefficient functions (3.14). The latter can often
be solved [24] step by step analytically in exact form, thereby, making it possible to obtain
owing to representation (3.2), the exact solution u ∈ M to the Cauchy problem (3.4) for our
nonlinear dynamical system in partial derivatives (3.3).

Remark 3.2 Concerning some applications of nonlinear dynamical systems like (3.1) in
mathematical physics problems, it is very important to construct their so called conservation
laws or smooth invariant functionals γ : M −→ R on M . Making use of the quantum math-
ematics technique described above one can suggest an effective algorithm for construction
these conservation laws in exact form.

Really, consider a vector |γ 〉 ∈ �, satisfying the linear equation:

∂

∂t
|γ 〉 + K̂∗[a+, a]|γ 〉 = 0. (3.16)

Then the following proposition [24] holds.

Proposition 3.3 The functional

γ := 〈u|γ 〉 (3.17)

is a conservation law for dynamical system (3.1), that is

dγ /dt |K = 0 (3.18)

along any orbit of the evolution mapping (3.5).

4 Conclusion

Within the scope of this work we have described main mathematical preliminaries and prop-
erties of the quantum mathematics techniques suitable for analytical studying the important
linearization problem for a wide class of nonlinear dynamical systems in partial derivatives
in Hilbert spaces. This problem was analyzed in many details using the Gelfand–Vilenkin
representation theory [17] of infinite-dimensional groups and the Goldin–Menikoff–Sharp
theory [18–20] of generating Bogolubov type functionals, classifying these representations.
The related problem of constructing Fock type space representations and retrieving their
creation-annihilation generating structure still needs a deeper investigation within the ap-
proach devised. We here mention only that some aspects of this problem within the so-called
Poissonian White noise analysis were studied in a series of works [1, 2, 23, 27], based on
some generalization of the Delsarte type characters technique. It is necessary to mention
also the related results obtained in [24–26], devoted to application of the Fock space em-
bedding method to finding conservation laws and the so called recursion operators for the
well known Korteweg–de Vries type nonlinear dynamical systems. Concerning some of im-
portant applications of the methods devised in the work to concrete dynamical systems, we
plan to devote next investigation.
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